AD-A192 925 SMO A DISTRINTED OPERATING SYSTEN BASED ON POOLS 4
SER\’ERS ARIZONA UNIV TUCSON G ANDRENS ET AL.
WAR 98 KOSI TR—”—OQOO AFOSR-87-0072
UNCLASSIFIED F/6 23/% NL

DA

SIS

>~

BEMAA GRS

-ill‘l‘lllll‘.‘ AA.""I.‘\F‘N U —

s

18

=
—
—

i
il

|- I.B

— —
=
1
=

2|l

1.2

)

-~ TEST CHART

FOWTANPARTS - 36T

NAL A REA

AT

i A o o e -
IRNRAVUAY (SR ST A o P
BUAAY AR ERRR]

PR N AT

' aT 2" a A A _A M

AD_A 132 825 IEPORT DOCUMENTATION PAGE

18 REPCOR dDtown: o -

UNCLASSIFIED

[SRErS - -

0TG +

'y “Bal Sl Bal B0

-l e,

Lk Ui

‘DAL
-

1b. RESTRICTIVE MARKINGS

op SESLR TY CLASSIF CATION AaUTHORITY

3 DISTRIBUTION AvAILAB(LITY OF REPOR™

Approved for public release; distribution

N/A

b JEC_ASSIFICATION DOWNGRADING SCHEDULE

unlimited

4 PERFCRMING DRGANIZATION REPORT NUMBER'S

5 MONlTOi'EGoOSﬂﬁA.N‘ITZﬁT;CN RREP§ '_N‘(jABaR@, 8

6a NVAME OF PERFORMING ORGANIZATION

University of Arizona

6o OFFICE SYMBO .
If appiicabie

7a. NAME OF MONITORING ORGANIZATION

AFOSR

6c. ADDRESS City. State ana ZIF Code:

Tucson, AZ 85721

7b. ADDRESS /(City. State and ZIF Coae:

Building 410
Bolling AFB DC 20332-6448

8s. NAME OF FUNDING/SPONSORING

AFOSR

8b. OFFICE SYMBOL
‘1f applicable,

NM

9. PROCUREMENT INSTRUMENT \DENTIFICATION NUMBER

AFOSR--564-0072

X
h
1
S
>
~
1

ORGANIZATION

8c. ADDRESS (City, State and ZIP Code) 10. SOURCE OF FUNDING NOS

PROGRAM PROJECT TASK WORK UNIT
Building 410 ELEMENT NO. NO. NO. NO.
Bolling AFB DC 20332-6448
11. TITLE ‘Include Security Classification) 61102F 2304 ~ AZ ~
Scaua e - A Distrinutad Cperat g BYainy Badked on Broie @Y [Semems

12. PERSONAL AUTHORI(S)
Gregory Andrews, Richard Schlichting

13a. TYPE OF REPORT 13b. TIME COVERED
Final FROML/1/84 To33/12/87

16. SUPPLEMENTARY NOTATION

14. OATE OF REPORT (Yr, Mo., Day) 15. PAGE COUNT

88/03/25 5

e

17 COSATI CODES
FIELD GROUP

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

SUB8. GR

Distributed Operating Systems, Progamming Languages

llO. ABSTRACT rContinue on reverse tf necessary and identify by block number)

The progress achiever over the four yeo.. che Saguaro distributed operating svstem

is presented. The amjor accomplishments include design of the full system, prototvpe

implementations of major system components on top of UNIX, and the implementation of

DTIC

< EEl.EE(:friE
MAY O 4 1988

portions of the system using the distributed programming language SR.

R

21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED

20. OISTRIBUTION/AVAILABILITY OF ABSTRACT

uncLassiFiep/uNLiMiTED (X same as rer X oTic users O

22s. NAYME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER

tInciude Area Code)

202/767-5026

EDITION OF 1 JAN 73 1S OBSOLETE

Abxalham Waksman

0D FORM 1473, 83 APR

2

P e AT 2 T A W

H
© 7
.

'
o5y

L

TR AAAAS

....,_,
e OISy

- Y
Yo

1

£ T_0_v
R

‘s

»

CORAALE: RPN

iy
fx-

.’,?:ff;

'_:

S

S AEYL
4{{&&«5

PR
» % " e
P

e
« e 'r

WL e

PEDP IO Y

. By
4,

=

s >
5
)

..
e
s

FR%"

4o

,
¥
1o

<&

2% . M W‘ﬂwbw.ﬁv-"}"}_
-
’ A ;I"'
»
.
AFOSR.-TR- 88-0408
-~
7
o
®
579
Final Technical Report :CR
A-- <
Saguaro: A Distributed Operating System Based on Pools of Servers :-",'.
]
[]
Accession For . -7
_ NTIS GRA&I e
Grant Number: AFOSR-84-0072 DTIC TAB g "
Unannounced 0 o
Grant Duration: January 1, 1984 - December 31, 1987 Justifieatien.___ | -’
. . . . By. y
Awarded to: The University of Arizona
Distribut ™
Tucson, Arizona 85721 Dastribution/ I
Availebility Codes :
. . T Tavall and/or o~
Principal Investigators: Gregory R. Andrews Dist Spee 121/” '."'
Richard D. Schlichting e
Department of Computer Science ' N
- Vo
l I LS
AFOSR Program Manager: Dr. Abraham Waksman .
Directorate on Mathematical and Information Sciences >
\;\ o
Y | '
-~ ’//ZZ(,((-/MQ(U‘ 72, 77 /{W ‘
Gregory R. Andrews Richard D. Schlichting i ‘ e
March 25, 1988 March 25, 1988 v
>
-’\'
XY
Summary :';\‘
H \ - J
The progress achiecved over the four years'of the Saguaro distributed operating systcm project is :j.
presented. The major accomplishments include design of the full system, prototype o
implementations of major system components on top of UNIX, and the implementation of '
portions of the system using the distributed programming language SR. Substantial work was ::‘_;
also performed on related research, including SR, the MLP system for constructing distributed =3
mixed-language programs, the Psync intcrprocess communication mechanism, the x configurable A -
operating system kemel, and the development of language mechanisms for performing failure ;\
handling in distributed programming languages. Ny
&
™
.‘.
gg 5 02 1 14 ¥
¥
e
S A A A A AT 0 N O £ NNt £ 6 R 82 8

i 3

Research Accomplishments

Over the past four years, we have made significant progress on the design and
implementation of the Saguaro distributed operating system. Substantial work has also been
performed on related research, including the SR distributed programming language, the MLP
system for constructing distributed mixed-language programs, the Psync interprocess
communication mechanism, the x configurable operating system kemel, and the design of
language mechanisms for handling failures in distributed programs.

Saguaro is a ncw operating system for computers connected by a local-arca network.
Systems constructed on such an architecture have the potential advantages of concurrency and
robustness. In Saguaro, thesc advantages are made available to the user through several
mechanisms. One is channels, a facility that allows the input and output of different uscr
commands to be connccted to fom: general graphs of communicating processes. Two additional
mechanisms are provided to support semi-transparent file replication and access: reproduction
sets and metafiles. The advantages of concurrency and robustness are also realized at the system
level by the use of pools of server processes and decentralized allocation protocols. Finally,
Saguaro makes extensive use of the Universal Type System (UTS), a data description language to
describe user data such as files and to specify the types of arguments to commands and
procedures. This enables the system to assist in type checking and lcads to a uscr interface in
which command-specific templates are available to facilitate command invocation.

A number of papers have been written describing various aspects of Saguaro. An carly
description of the system is reported in [1], while a subsequent paper describing the design of the
system appears in [2]. Another paper describing the mechanisms for enhancing file availability
appears in [3]. A related paper describes the implementation and use of reproduction sets and
mectafiles in a UNIX environment [4]. The cntire file system has now been implemented on Sun
workstations; this work is described in detail in a Ph.D. dissertation [5}. Summarics of Saguaro
and the related projects also appear in the proccedings of two workshops on experimental
distributed systems [6]. Finally, a formal derivation of a rectangle partitioning algorithm
motivated by the window manipulation necessary for the Saguaro user interface is outlined in [7].

As mentioned, significant progress has also bcen made on related projects. One of these is
further devclopment of the SR distributed programming language, which has been used to
implement the Saguaro file system and will be used to implement the rest of Saguaro. Over the
past several years, a large amount of effort was expended revising SR and implementing a
compiler for the new version. The main language constructs are still resources and operations:
resources encapsulate processes and variables they share, operations provide thc primary
mechanism for process interaction. One way in which SR has changed is that both resources and
processes are now created dynamically. Another change is that the mechanisms for opcration
invocation—call aud send—and operation implementation—proc and in—have been cxtended
and integrated. Conscquently, all of local and remote procedure call, rendczvous, dynamic
process creation, asynchronous message passing, multicast, and semaphores are supported. Wc¢
have found this flexihility to be very useful for distributed programming. The language has also
been refined in numerous additional ways to provide additional flexibility. Moreover, by basing

-1-

() r" . -’ -f‘ ." wy ‘\f o v " A "‘ " —N'{’~:'{-’§'§’\’~'- "\-"\'“ oy " { o "\' e "'\""."\.’\‘ SRR "\"- e \ ROLNRN \"~."\':\

N ‘-"'J‘"."J'\J"J N ".' NG o

. B A P A AN AR A e LA e e O b el P W e
M o T o e o e R a M e Al o Y a i T o w0 Y a P Y L PRI 2t gt B g S ML AL 0 240 A0 2GS L P AL

SR on a small number of well-integrated concepts, the language is also relatively simple and has
a reasonably efficient implementation.

The compiler and runtime support currently execute on top of UNIX; they have been in use
since November 1985. Since that time, numerous small enhancements to the language have been
made, mainly in response to comments from users. SR now runs on both Vaxes and Suns and
most of the language features have been implemented. The implementation is currcntly in beta
test and will soon be ready for release to whomever is interested.

The cuifeni version ol the >K language is defined in [8]. An overview of the language and
its implementation is given in [9], while an earlier version of the language is documented in two
technical reports [10, 11]. A detailed discussion of how SR has evolved—what has changed and
why as well as what has not changed and why not—is given in [12]. Much of this work was
performed as part of the disscrtation research of a recently completed doctoral student {13].
Experience using the language to implement the Saguaro file system appears in [5]. In addition,
the variety of communicaiion primitives provided by SR has facilitated the research of Stella
Atkins, who was a visiting professor at Arizona during Spring 1986 [14, 15].

A second Saguaro-related project is the MLP system for constructing distributed, mixed
language programs. This system allows users to write sequential programs in which each
procedure can be written in any one of several programming languages and located on any
machine in a network. In effect, MLP allows heterogeneity in language and machine
functionality 10 be exploited by the addition of a general remote procedure call facility 1o each
supported language. Writing an MLP program involves three steps: the addition of interface
specifications written in UTS to each procedure, translation of the augmented source using an
MLP translator for the given host language, and the invocation of the MLP linker to produce an
executable program. At run-time, values are transmitted between procedurces using a machine
and language indcpendent data representation; conversions between such values and their
equivalent host language values arc performed automatically in most cases. The system executes
on a collection of Vaxes and Suns running Berkeley UNIX. Currently supported languages are C,
Pascal, and Icon. Work has recently begun on a second version of the system.

The UTS system and its application to mixed language programming are described in [16].
A description of the implementation of MLP and our expericnce in using the systcm appears in
[17]. A user’s manual on the MLP system has also been written [18], as has a report describing
how to add a ncw language to the system [19]. The way in which the object-oriented distributed
programming language Emecrald is being integrated into the second version of the system appears
in [20].

Another line of research has involved two scparate projccts investigating aspects of
interprocess communication. The first is Psync, an interprocess communicatioil mechanism that
supports a ncw abstraction through which a group of processes can exchange messages. The
novel aspect of Psync is that it prescrves the happened before partial ordering of messages
exchanged among multiple processes. Just as physical clock signals arc encoded with data bits in
a raw communication channel to help kcep the source and destination synchronized, Psync
cxplicitly embeds timing information drawn from the distributed computation’s logical clock.

2

el N f&f,\«-'v-.) ". -’.\-’. CCCRACR A -’_-_'f-."-_'-. Yy ~. ‘.‘\';\ ~"

WOAY
9,

A

P A
S 5 G % s

".’ ._’ N AA .v".'\'i‘lf"-'

-

N

CyYy

T Y

A RLTL TRN

Ay

v
a

PN

s

IR Pl T
2!

P
.
»

5

'ﬁ ';I{': ‘I.‘ s >

e v
s .-'
»

‘I
-

oy T e e e e e e T e T T e T T e e A R " R e T e e e RN
b 'f".-".r.-'.-'.r".r e e e e N A A I N N A A AN P A N N N N A S AT I A T AT AT S

We have recently implemented and experimented with a prototype version of Psync. The
prototype demonstrates that recording the happencd before relation in the communications
subsystem can be implemented o1 an unreliable communications network at little cost. Also, the
abstraction provided by Psync is general enough to support efficient and elcgant implementations
of a wide spectrum of communication paradigms.

The second project is the x-kemel, a configurable opcrating system kemel designed to
support experimentation in interprocess communication and distributed programming. The x-
kernel’s underlying architecture provides a rich set of abstractions that are used to construct and
compose communication protocols. The architecture is intcresting because the these abstractions
are both general enough to accommodate a wide range of protocols and cfficient enough to
provide a useful testbed in which protocol performance can be accurately measured.

An initial description of Psync appears in [21] (that paper was selected as the outstanding
paper at its symposium). A more comprehensive paper that includes discussion of the
implementation is currently nearing compietion [22]. The design of the x-kernel is documented
in [23].

The final related line of investigation has been developing language mechanisms for
handling failures. One property that makes failures difficult to handle in distributed systems is
that they can occur concurrently with other system events. We have been investigating an
approach for writing fault-tolerant distributed programs that can cope with such asynchrony in a
systcmatic manncr. The basic idea is to treat failures as just another class of events that are
handled similarly to normal system cvents. Linguistic constructs that can be added to distributed
programming languages with minimal impact are then proposed to handie such failurc events.
Although our approach is applicavle to most concurrent languages, to make our ideas precisc we
have been using the SR distributed programming language as a basis for incorporating these
constructs. Two non-trivial fault-tolerant protocols have been written in this extended SR
language: replicated directory management and two-phasc commit. The class of failurcs
considered are those suffered by fail-stop processors.

Our initial proposal for failure handling mechanisms is described in [24]. The mechanisms
have recently been refined and extended, as described in [25].

Finally, a paper has been written that surveys several of these projects in distributed
languages and systems, and offers obscrvations based on the experience gained during their
design, implementation, and use [26]. The relevant projects are the SR distributed programming
language, the Saguaro distributed operating system, the MLP system for constructing distributed
mixed-language programs, the object-based distributed programming language Emerald, and the
Psync intcrprocess communication mechanism. The observations address the experimentation
process itsclf as well as the design of distributed software.

~ JLSLE

AR S R N L N NN
» TP

ST,

OO E G g

Aar's

i ale ae “ad % - Sk Tk Al)z] . . - . 2 " add Bl - " 32 A" .
N . P AL AL B B 4N Pt M N N A S Jie B0 9% SO0 I B RR) Cd RN N N Y YV Y AL O] (S, LS .+
]

AT W

References

-
K

[1] Andrews, G.R., Schlichting, R.D., Buchholz, N., Hayes, R., and Purdin, T. The Saguaro

. distributed operating system. Technical Report TR 85-9, Department of Computer Science,
Uriversity of Arizona, April 1985.

[2] Andrews, G.R., Schlichting, R.D., Hayes, R., and Purdin, T. The design of the Saguaro
distributed operating system. /EEE Trans. on Soft. Eng. SE-13,1 (Jan. 1987), 104-118.

[3] Schlichting, R.D., Andrews, G.R., and Purdin, T. Mechanisms to enhance filc availability
in distributed systems, Proc. 16th Fault-Tolerant Computing Symposius:, Vicnna, July :
1986, 44-49, g

[4] Purdin, T., Schlichting, R.D., and Andrews, G.R. A file replication mechanism for
Berkeley UNIX. Software—Practice and Experience 17,12 (Dec. 1987), 923-940.

> e o o N
PRt Db Do ok It g

]

s
v {51 Purdin, T. Enhancing File Availability in Distributed Systems (The Saguaro File System).
Y Ph.D. Dissertation, Department of Computer Science, University of Arizona, August 1987. ‘
3 (6] Andrews, G.R., and Schlichting, R.D. The Saguaro distributed operating system and rclated
projects. Proceeding of the SIGOPS Workshop on Making Distributed Systems Work, .
:;j Amsterdam (Sept. 1986). Also, Proceedings of the IEEE Computer Society’s Workshop on R
- Design Principles in Experimental Distributed Systems, West Lafayette, IN (Oct. 1986).)
::; {71 Schlichting, R.D. Deriving an algorithm for partitioning rectangles. Technical Report TR ‘
'»' 85-10, Department of Computer Science, University of Arizona, May 1985.
;_ [8] Andrews. G.R,, and Olsson, R.A. Reviscd report on the SR programming language.
N Technical Report TR 87-27, Department of Computer Science, University of Arizona, 2
- November 1987 N
I\ 1
- [91 Andrews, G.R., Olsson, R.A., et al. An overview of the SR language and implementation. :
ACM Trans. on Prog. Lang. and Systems 10,1 (Jan. 1988), 51-86.
- [10] Olsson, R.A. and Andrews, G.R. SucccssoR: Refinements to SR. Technical Report TR
o 84-3, Department of Computer Science, University of Arizona, March 1984 -
j: {11] Olsson, R.A. and Andrews, G.R. An implementation of SuccessoR. Technical Report TR
" - 84-4, Department of Computer Science, University of Arizona, March 1984 "
{12] Andrews, G.R. and Olsson, R.A. The evolmion of the SR language. Distributed -
- Computing 1,3 (July 1986), 133-149. .
- "
» [13] Olsson, R.A. Issucs in distributed programming: The cvolution of SR. Ph.D. Disscrtation, A
A Dcpartment of Computer Science, University of Arizona, Aug. 1986. -
g [14] Atkins, M.S and Olsson, R.A. Performance of multi-tasking and synchronization
) mechanisms in the programming language SR. Software—Practice and Experience (1988),
& 1o appear.
N
-~ [15] Atkins, M.S. Expcriments in SR with different upcall program structures. ACM Trans. on X
N Computer Systems, 10 appear.
' [16] Hayes, R., and Schlichting, R.D. Facilitating mixed language programming in distributcd
M systems. /EEE Trans. on Soft. Eng. SE-13,12 (December 1987), 1254-1264. iy
y
By = -4-
R
A
.‘\.' N e T NN e AT AT ST T -."-"-."'\"\'--.."\"'\" SOERER R -.':\"--.-."s.':\"'\':\.{\."\"\':-."\':\"\"\;\. RRAREN \"

A
o,
e
)
N
.:,‘_
o~
AN
[171 Hayes, R., Manwciicr, S.W., and Schlichting, R.D. A simple system for constructing .
distributed, mixed language programs. Software—Practice and Experience (1988), 10 3
appear. ';_-:
[18] Manweiler, S.W., Hayes, R., and Schlichting, R.D. The MLP systcm user’s manual. N
Technical Report TR 86-4, Department of Computer Science, University of Arizona, ,_-‘
February 1986. -
[19} Manweiler, S.W., Hayes, R., and Schlichting, R.D. Adding new languages to thec MLP -
system. Technical Report TR 86-16, Department of Computer Science, University of)
Arizona, May 1986. .
[20} Haycs, R., Hutchinson, N.C, and Schlichting, R.D. Intcgrating an object-oriented 'j:‘
programming language into a system for mixed-language programming. Submitted for]
publication, March 1988. e
[21] Peterson, L. L.. Preserving context information in an IPC abstraction. Proc. 6th Symposium :
on Reliabilitv in Distributed Software and Database Systems (March 1987), 22-31 N
(Ouistanding Paper Award). A
[22] Peterson, L.L., Buchholz, N., and Schlichting, R.D. Prescrving and using context '
information in interprocess communication. In preparation.
{23] Hutchinson, N.C., and Pecterson, L.L. Design of the x-kemel. Submitted for publication, :::-
March 1988. o~
n
[24] Schlichting, R.D. and Purdin, T. Failure handling in distributed programming languages. o
Proc. 5th Symposium on Reliability in Distributed Software and Database Systems, 1Los ’
Angeles, Jan. 1986, 59-66. o
[25] Schlichting, R.D., Cristian, F., and Purdin, T. Mechanisms for failurc handling in :::,'
distributed programming languages. Submitted for publication, May 1987. :'j.,
[26] Schlichting, R.D., Andrews, G.R., Hutchinson, N.C., Olsson, R.A., and Pcterson, L.L. <
Obscrvations on building distributed languages and systems. Experiences with Distributed la_
Systems, (J. Nehmer, Ed.), Lecture Notes in Computer Science, Springer-Verlag, New York, G
to appear. e
:;J'
Ny

)

,'ll
[s

SORON

D e e g N g e g g g B e e T N T T K MO = W00 S 0 2 T S

T Y Y Y W Y R R Y Y R AT RO R G oSG v Y L s g

o
ot
\:‘,'r
i
1'
2
o Participating Professionals
' Gregory R. Andrews, Profcssor and Department Head, Dept. of Computer Science, University of
al Arizona
; :} ' Richard D. Schlichting, Assistant Profcssor, Dept. of Computer Science, University of Arizona
s
’ Larry L. Peterson, Assistant Professor, Dept. of Computer Science, University of Arizona
> :E:-f Ronald A. Olsson, Assistant Professor, Division of Computer Science, University of Califomnia,
N Davis (Ph.D. eamned at Arizona, 1986)
N
NN Titus Purdin, Assistant Professor, Dept. of Computer Science, Colorado State University (Ph.D.
eamed at Arizona, 1987)
U Stella Atkins, Assistant Professor, Dept. of Computer Science, Simon Fraser University (visiting
| :\. Assistant Professor, 1986)
& »
‘ "'_ Nick Buchholz, Ph.D. student, Dept. of Computer Science, University of Arizona
[l
Shyamal Chowdhury, Ph.D. student, Dept. of Computer Scicnce, University of Arizona
i:_‘_: Mike Coffin, Ph.D. student, Dept. of Computer Science, University of Arizona
;‘::: Irv Elshoff, Ph.D. student, Dept. of Computer Science, University of Arizona
.
- Rogcr Hayes, Ph.D. student, Dept. of Computer Science, University of Arizona
; Janalec O’Bagy, Ph.D. student, Dept. of Computer Science, University of Arizona
. :" Kelvin Nilsen, Ph.D. student, Dept. of Computer Science, University of Arizona
:: Ajei Gopal, Ph.D. student, Dept. of Computer Science, Comnell University (M.S. camed at
Anzona, 1985)
N Steve W. Manweiler, Member, Technical Staff, Hewlett-Packard Corp., Ft. Collins, Colorado
A\ > (M.S. carncd at Arizona, 1986)
e
X
’-
=
o
Y
v
\E:
P
"‘-JII
c!'
».‘
by
\
N
A
A A -6-
.-:'
e Gy A i S et e Ao A A A N A v s e R e A G AR st I

A

LA AN

YV
C.‘

AN A

. @
v
2.

.

PR A AN

.

"].[

T XA

l .‘ '
PRINACACN N AN NN N

N

ARG

e

